Mathematical principle Milliradian











for small observed angles (green) arc length (blue) approaches subtension (orange).


use of milliradian practical because concerned small angles, , when using radians small angle approximation shows angle approximates sine of angle,



sin

θ

θ


{\displaystyle \sin \theta \simeq \theta }

. allows user dispense trigonometry , use simple ratios determine size , distance high accuracy rifle , short distance artillery calculations using handy property of subtension: 1 mil approximately subtends 1 meter @ distance of 1 thousand meters.


more in detail, because




subtension



arc length



{\displaystyle {\text{subtension}}\simeq {\text{arc length}}}

, instead of finding angular distance denoted θ (greek letter theta) using tangent function







θ

trig


=
arctan



subtension
range




{\displaystyle \theta _{\text{trig}}=\arctan {\frac {\text{subtension}}{\text{range}}}}

,


one can instead make approximation using definition of radian , simplified formula:







θ

rad


=


subtension
range




{\displaystyle \theta _{\text{rad}}={\frac {\text{subtension}}{\text{range}}}}


since radian mathematically defined angle formed when length of circular arc equals radius of circle, milliradian, angle formed when length of circular arc equals 1/1000 of radius of circle. radian, milliradian dimensionless, unlike radian same unit must used radius , arc length, milliradian needs have ratio between units subtension thousandth of radius when using simplified formula.


approximation error

the approximation error using simplified linear formula increase angle increases. example, a



3.3 × 10 % (or 6993330000000000000♠0.00000033%) error angle of 0.1 mil, instance assuming 0.1 mil equals 1 cm @ 100 m
0.03% error 30 mils, i.e. assuming 30 mils equals 30 m @ 1000 m
2.9% error 300 mils, i.e. assuming 300 mils equals 300 m @ 1000 m


the approximation using mils more precise using common system 1′ approximated 1 inch @ 100 yards, comparably there a:



4.5% error assuming angle of 1 equals 1 in @ 100 yd
55% error 100 , i.e. assuming 100 equals 100 in @ 100 yd
953% error 1000 , i.e. assuming 1000 equals 1000 in @ 100 yd








Comments

Popular posts from this blog

In literature Socialist realism in Romania

The Most Excellent Order of the British Empire 1919 New Year Honours

How CURP codes are built Unique Population Registry Code