Symbolic notation Symbolic method
1 symbolic notation
1.1 example: discriminant of binary quadratic form
1.2 higher degrees
1.3 more variables
symbolic notation
the symbolic method uses compact rather confusing , mysterious notation invariants, depending on introduction of new symbols a, b, c, ... (from symbolic method gets name) apparently contradictory properties.
example: discriminant of binary quadratic form
these symbols can explained following example (gordan 1887, volume 2, pages 1-3). suppose that
f
(
x
)
=
a
0
x
1
2
+
2
a
1
x
1
x
2
+
a
2
x
2
2
{\displaystyle \displaystyle f(x)=a_{0}x_{1}^{2}+2a_{1}x_{1}x_{2}+a_{2}x_{2}^{2}}
is binary quadratic form invariant given discriminant
Δ
=
a
0
a
2
−
a
1
2
.
{\displaystyle \displaystyle \delta =a_{0}a_{2}-a_{1}^{2}.}
the symbolic representation of discriminant is
2
Δ
=
(
a
b
)
2
{\displaystyle \displaystyle 2\delta =(ab)^{2}}
where , b symbols. meaning of expression (ab) follows. first of all, (ab) shorthand form determinant of matrix rows a1, a2 , b1, b2, so
(
a
b
)
=
a
1
b
2
−
a
2
b
1
.
{\displaystyle \displaystyle (ab)=a_{1}b_{2}-a_{2}b_{1}.}
squaring get
(
a
b
)
2
=
a
1
2
b
2
2
−
2
a
1
a
2
b
1
b
2
+
a
2
2
b
1
2
.
{\displaystyle \displaystyle (ab)^{2}=a_{1}^{2}b_{2}^{2}-2a_{1}a_{2}b_{1}b_{2}+a_{2}^{2}b_{1}^{2}.}
next pretend that
f
(
x
)
=
(
a
1
x
1
+
a
2
x
2
)
2
=
(
b
1
x
1
+
b
2
x
2
)
2
{\displaystyle \displaystyle f(x)=(a_{1}x_{1}+a_{2}x_{2})^{2}=(b_{1}x_{1}+b_{2}x_{2})^{2}}
so that
a
i
=
a
1
2
−
i
a
2
i
=
b
1
2
−
i
b
2
i
{\displaystyle \displaystyle a_{i}=a_{1}^{2-i}a_{2}^{i}=b_{1}^{2-i}b_{2}^{i}}
and ignore fact not seem make sense if f not power of linear form. substituting these values gives
(
a
b
)
2
=
a
2
a
0
−
2
a
1
a
1
+
a
0
a
2
=
2
Δ
.
{\displaystyle \displaystyle (ab)^{2}=a_{2}a_{0}-2a_{1}a_{1}+a_{0}a_{2}=2\delta .}
higher degrees
more if
f
(
x
)
=
a
0
x
1
n
+
(
n
1
)
a
1
x
1
n
−
1
x
2
+
⋯
+
a
n
x
2
n
{\displaystyle \displaystyle f(x)=a_{0}x_{1}^{n}+{\binom {n}{1}}a_{1}x_{1}^{n-1}x_{2}+\cdots +a_{n}x_{2}^{n}}
is binary form of higher degree, 1 introduces new variables a1, a2, b1, b2, c1, c2, properties
f
(
x
)
=
(
a
1
x
1
+
a
2
x
2
)
n
=
(
b
1
x
1
+
b
2
x
2
)
n
=
(
c
1
x
1
+
c
2
x
2
)
n
=
⋯
.
{\displaystyle f(x)=(a_{1}x_{1}+a_{2}x_{2})^{n}=(b_{1}x_{1}+b_{2}x_{2})^{n}=(c_{1}x_{1}+c_{2}x_{2})^{n}=\cdots .}
what means following 2 vector spaces naturally isomorphic:
the vector space of homogeneous polynomials in a0,...an of degree m
the vector space of polynomials in 2m variables a1, a2, b1, b2, c1, c2, ... have degree n in each of m pairs of variables (a1, a2), (b1, b2), (c1, c2), ... , symmetric under permutations of m symbols a, b, ....,
the isomorphism given mapping an−j
1aj
2, bn−j
1bj
2, .... aj. mapping not preserve products of polynomials.
more variables
the extension form f in more 2 variables x1, x2,x3,... similar: 1 introduces symbols a1, a2,a3 , on properties
f
(
x
)
=
(
a
1
x
1
+
a
2
x
2
+
a
3
x
3
+
⋯
)
n
=
(
b
1
x
1
+
b
2
x
2
+
b
3
x
3
+
⋯
)
n
=
(
c
1
x
1
+
c
2
x
2
+
c
3
x
3
+
⋯
)
n
=
⋯
.
{\displaystyle f(x)=(a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}+\cdots )^{n}=(b_{1}x_{1}+b_{2}x_{2}+b_{3}x_{3}+\cdots )^{n}=(c_{1}x_{1}+c_{2}x_{2}+c_{3}x_{3}+\cdots )^{n}=\cdots .}
Comments
Post a Comment